Index – I image_mod_n() (sage.modular.arithgroup.congroup_gamma.Gamma_class method) (sage.modular.arithgroup.congroup_gammaH.GammaH_class method) (sage.modular.arithgroup.congroup_generic.CongruenceSubgroup method) (sage.modular.arithgroup.congroup_generic.CongruenceSubgroupFromGroup method) index() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) (sage.modular.arithgroup.arithgroup_perm.ArithmeticSubgroup_Permutation_class method) (sage.modular.arithgroup.congroup_gamma.Gamma_class method) (sage.modular.arithgroup.congroup_gamma0.Gamma0_class method) (sage.modular.arithgroup.congroup_gamma1.Gamma1_class method) (sage.modular.arithgroup.congroup_gammaH.GammaH_class method) (sage.modular.arithgroup.congroup_generic.CongruenceSubgroupFromGroup method) (sage.modular.arithgroup.farey_symbol.Farey method) is_abelian() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) is_ArithmeticSubgroup() (in module sage.modular.arithgroup.arithgroup_generic) is_congruence() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) (sage.modular.arithgroup.arithgroup_perm.ArithmeticSubgroup_Permutation_class method) (sage.modular.arithgroup.congroup_generic.CongruenceSubgroupBase method) is_CongruenceSubgroup() (in module sage.modular.arithgroup.congroup_generic) is_even() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) (sage.modular.arithgroup.arithgroup_perm.EvenArithmeticSubgroup_Permutation method) (sage.modular.arithgroup.arithgroup_perm.OddArithmeticSubgroup_Permutation method) (sage.modular.arithgroup.congroup_gamma0.Gamma0_class method) (sage.modular.arithgroup.congroup_gamma1.Gamma1_class method) (sage.modular.arithgroup.congroup_gammaH.GammaH_class method) is_finite() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) is_Gamma() (in module sage.modular.arithgroup.congroup_gamma) is_Gamma0() (in module sage.modular.arithgroup.congroup_gamma0) is_Gamma1() (in module sage.modular.arithgroup.congroup_gamma1) is_GammaH() (in module sage.modular.arithgroup.congroup_gammaH) is_normal() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) (sage.modular.arithgroup.arithgroup_perm.ArithmeticSubgroup_Permutation_class method) is_odd() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) (sage.modular.arithgroup.arithgroup_perm.EvenArithmeticSubgroup_Permutation method) (sage.modular.arithgroup.arithgroup_perm.OddArithmeticSubgroup_Permutation method) is_parent_of() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) is_regular_cusp() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) is_SL2Z() (in module sage.modular.arithgroup.congroup_sl2z) is_subgroup() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) (sage.modular.arithgroup.congroup_gamma0.Gamma0_class method) (sage.modular.arithgroup.congroup_gamma1.Gamma1_class method) (sage.modular.arithgroup.congroup_gammaH.GammaH_class method) (sage.modular.arithgroup.congroup_sl2z.SL2Z_class method)
Index – I image_mod_n() (sage.modular.arithgroup.congroup_gamma.Gamma_class method) (sage.modular.arithgroup.congroup_gammaH.GammaH_class method) (sage.modular.arithgroup.congroup_generic.CongruenceSubgroup method) (sage.modular.arithgroup.congroup_generic.CongruenceSubgroupFromGroup method) index() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) (sage.modular.arithgroup.arithgroup_perm.ArithmeticSubgroup_Permutation_class method) (sage.modular.arithgroup.congroup_gamma.Gamma_class method) (sage.modular.arithgroup.congroup_gamma0.Gamma0_class method) (sage.modular.arithgroup.congroup_gamma1.Gamma1_class method) (sage.modular.arithgroup.congroup_gammaH.GammaH_class method) (sage.modular.arithgroup.congroup_generic.CongruenceSubgroupFromGroup method) (sage.modular.arithgroup.farey_symbol.Farey method) is_abelian() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) is_ArithmeticSubgroup() (in module sage.modular.arithgroup.arithgroup_generic) is_congruence() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) (sage.modular.arithgroup.arithgroup_perm.ArithmeticSubgroup_Permutation_class method) (sage.modular.arithgroup.congroup_generic.CongruenceSubgroupBase method) is_CongruenceSubgroup() (in module sage.modular.arithgroup.congroup_generic) is_even() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) (sage.modular.arithgroup.arithgroup_perm.EvenArithmeticSubgroup_Permutation method) (sage.modular.arithgroup.arithgroup_perm.OddArithmeticSubgroup_Permutation method) (sage.modular.arithgroup.congroup_gamma0.Gamma0_class method) (sage.modular.arithgroup.congroup_gamma1.Gamma1_class method) (sage.modular.arithgroup.congroup_gammaH.GammaH_class method) is_finite() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) is_Gamma() (in module sage.modular.arithgroup.congroup_gamma) is_Gamma0() (in module sage.modular.arithgroup.congroup_gamma0) is_Gamma1() (in module sage.modular.arithgroup.congroup_gamma1) is_GammaH() (in module sage.modular.arithgroup.congroup_gammaH) is_normal() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) (sage.modular.arithgroup.arithgroup_perm.ArithmeticSubgroup_Permutation_class method) is_odd() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) (sage.modular.arithgroup.arithgroup_perm.EvenArithmeticSubgroup_Permutation method) (sage.modular.arithgroup.arithgroup_perm.OddArithmeticSubgroup_Permutation method) is_parent_of() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) is_regular_cusp() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) is_SL2Z() (in module sage.modular.arithgroup.congroup_sl2z) is_subgroup() (sage.modular.arithgroup.arithgroup_generic.ArithmeticSubgroup method) (sage.modular.arithgroup.congroup_gamma0.Gamma0_class method) (sage.modular.arithgroup.congroup_gamma1.Gamma1_class method) (sage.modular.arithgroup.congroup_gammaH.GammaH_class method) (sage.modular.arithgroup.congroup_sl2z.SL2Z_class method)